
 Unit-IV

1

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Classification: Basic Concepts

Classification is a form of data analysis that extracts models describing important data classes. Such

models, called classifiers, predict categorical (discrete, unordered) class labels. For example, we can

build a classification model to categorize bank loan applications as either safe or risky. Such analysis

can help provide us with a better understanding of the data at large.

What Is Classification?

A bank loans officer needs analysis of her data to learn which loan applicants are “safe” and which

are “risky” for the bank. A marketing manager at AllElectronics needs data analysis to help guess

whether a customer with a given profile will buy a new computer. A medical researcher wants to

analyze breast cancer data to predict which one of three specific treatments a patient should receive.

In each of these examples, the data analysis task is classification, where a model or classifier is

constructed to predict class (categorical) labels, such as “safe” or “risky” for the loan application data;

“yes” or “no” for the marketing data; or “treatment A,” “treatment B,” or “treatment C” for the

medical data. These categories can be represented by discrete values, where the ordering among

values has no meaning.

Suppose that the marketing manager wants to predict how much a given customer will spend

during a sale at AllElectronics. This data analysis task is an example of numeric prediction, where the

model constructed predicts a continuous-valued function, or ordered value, as opposed to a class

label. This model is a predictor. Regression analysis is a statistical methodology that is most often

used for numeric prediction;

General Approach to Classification

“How does classification work?” Data classification is a two-step process, consisting of a learning

step (where a classification model is constructed) and a classification step (where the model is used to

predict class labels for given data).

In the first step, a classifier is built describing a predetermined set of data classes or concepts. This is

the learning step (or training phase), where a classification algorithm builds the classifier by

analyzing or “learning from” a training set made up of database tuples and their associated class

labels. A tuple, X, is represented by an n-dimensional attribute vector, X =(x1, x2, … , xn), depicting

n measurements made on the tuple from n database attributes, respectively, A1, A2, …., An.1 Each

tuple, X, is assumed to belong to a predefined class as determined by another database attribute called

the class label attribute. The class label attribute is discrete-valued and unordered. It is categorical (or

nominal) in that each value serves as a category or class. The individual tuples making up the training

set are referred to as training tuples.

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

 Unit-IV

2

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Because the class label of each training tuple is provided, this step is also known as supervised

learning (i.e., the learning of the classifier is “supervised” in that it is told to which class each training

tuple belongs). It contrasts with unsupervised learning (or clustering), in which the class label of each

training tuple is not known, and the number or set of classes to be learned may not be known in

advance. For example, if we did not have the loan decision data available for the training set, we

could use clustering to try to determine “groups of like tuples,” which may correspond to risk groups

within the loan application data.

“What about classification accuracy?” In the second step (Figure 8.1b), the model is used for

classification. First, the predictive accuracy of the classifier is estimated. If we were to use the

training set to measure the classifier’s accuracy, this estimate would likely be optimistic, because the

classifier tends to overfit the data (i.e., during learning it may incorporate some particular anomalies

of the training data that are not present in the general data set overall). Therefore, a test set is used,

made up of test tuples and their associated class labels. They are independent of the training tuples,

meaning that they were not used to construct the classifier.

The accuracy of a classifier on a given test set is the percentage of test set tuples that are correctly

classified by the classifier.

Decision Tree Induction

 Decision tree induction is the learning of decision trees from class-labeled training tuples. A

decision tree is a flowchart-like tree structure, where each internal node (nonleaf node) denotes a test

on an attribute, each branch represents an outcome of the test, and each leaf node (or terminal node)

holds a class label. The topmost node in a tree is the root node.

 Unit-IV

3

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

“How are decision trees used for classification?” Given a tuple, X, for which the associated class

label is unknown, the attribute values of the tuple are tested against the decision tree. A path is traced

from the root to a leaf node, which holds the class prediction for that tuple. Decision trees can easily

be converted to classification rules.

“Why are decision tree classifiers so popular?” The construction of decision tree classifiers does not

require any domain knowledge or parameter setting, and therefore is appropriate for exploratory

knowledge discovery. Decision trees can handle multidimensional data.

During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning, developed a

decision tree algorithm known as ID3 (Iterative Dichotomiser). This work expanded on earlier work

on concept learning systems, described by E. B. Hunt, J. Marin, and P. T. Stone. Quinlan later

presented C4.5 (a successor of ID3), which became a benchmark to which newer supervised learning

algorithms are often compared. In 1984, a group of statisticians (L. Breiman, J. Friedman, R. Olshen,

and C. Stone) published the book Classification and Regression Trees (CART), which described the

generation of binary decision trees. ID3 and CART were invented independently of one another at

around the same time, yet follow a similar approach for learning decision trees from training tuples.

ID3, C4.5, and CART adopt a greedy (i.e., nonbacktracking) approach in which decision trees are

constructed in a top-down recursive divide-and-conquer manner. Most algorithms for decision tree

induction also follow a top-down approach, which starts with a training set of tuples and their

associated class labels. A basic decision tree algorithm is summarized as follows

Strategy:

- The tree starts as a single node, N, representing the training tuples in D (step 1).

- If the tuples in D are all of the same class, then node N becomes a leaf and is labeled with that

class (steps 2 and 3). Note that steps 4 and 5 are terminating conditions. Otherwise, the

algorithm calls Attribute selection method to determine the splitting criterion. The splitting

criterion tells us which attribute to test at node N by determining the “best” way to separate or

partition the tuples in D into individual classes (step 6) - a split-point or a splitting subset

A partition is pure if all the tuples in it belong to the same class.

- The node N is labeled with the splitting criterion, which serves as a test at the node (step 7).

Let A be the splitting attribute.A has v distinct values, {a1, a2, … , av}, based on the training

data.

1. A is discrete-valued:

2. A is continuous-valued:

3. A is discrete-valued and a binary tree must be produced (as dictated by the attribute

selection measure or algorithm being used):

4. The algorithm uses the same process recursively to form a decision tree for the tuples at

each resulting partition, Dj , of D (step 14).

5. The recursive partitioning stops only when any one of the following terminating

conditions is true:

1. All the tuples in partition D (represented at node N) belong to the same class (steps

2 and 3).

2. There are no remaining attributes on which the tuples may be further partitioned (step 4). In this

case, majority voting is employed (step 5). This involves converting node N into a leaf and labeling it

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

 Unit-IV

4

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

with the most common class in D. Alternatively, the class distribution of the node tuples may be

stored

3. There are no tuples for a given branch, that is, a partition Dj is empty (step 12). In

this case, a leaf is created with the majority class in D (step 13).

- The resulting decision tree is returned (step 15).

 Unit-IV

5

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

The computational complexity of the algorithm given training set D is , where

n is the number of attributes describing the tuples in D and |D| is the number of training tuples in D.

Attribute Selection Measures

An attribute selection measure is a heuristic for selecting the splitting criterion that “best” separates a

given data partition, D, of class-labeled training tuples into individual classes. If we were to split D

into smaller partitions according to the outcomes of the splitting criterion, ideally each partition

would be pure (i.e., all the tuples that fall into a given partition would belong to the same class).

The attribute selection measure provides a ranking for each attribute describing the given training

tuples. The attribute having the best score for the measure4 is chosen as the splitting attribute for the

given tuples. If the splitting attribute is continuous-valued or if we are restricted to binary trees, then,

respectively, either a split point or a splitting subset must also be determined as part of the splitting

criterion. The three popular attribute selection measures—information gain, gain ratio, and Gini

index.

Information Gain

ID3 uses information gain as its attribute selection measure. This measure is based on pioneering

work by Claude Shannon on information theory, which studied the value or “information content” of

messages.

The expected information needed to classify a tuple in D is given by

where pi is the nonzero probability that an arbitrary tuple in D belongs to class Ci and is estimated by

.

A log function to the base 2 is used, because the information is encoded in bits. Info(D) is just the

average amount of information needed to identify the class label of a tuple in D. Info(D) is also

known as the entropy of D.

Now, suppose we were to partition the tuples in D on some attribute A having v distinct values,

, as observed from the training data. If A is discrete-valued, these values correspond

directly to the v outcomes of a test on A. Attribute A can be used to split D into v partitions or

subsets,

where Dj contains those tuples in D that have outcome aj of A.

How much more information would we still need (after the partitioning) to arrive at an exact

classification? This amount is measured by

The term acts as the weight of the jth partition. InfoA.D/ is the expected information required to

classify a tuple from D based on the partitioning by A. The smaller the expected information (still)

required, the greater the purity of the partitions.

Information gain is defined as the difference between the original information requirement (i.e., based

on just the proportion of classes) and the new requirement (i.e., obtained after partitioning on A).

That is,

akkin
Highlight

akkin
Highlight

 Unit-IV

6

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

In other words, Gain(A) tells us how much would be gained by branching on A. It is the expected

reduction in the information requirement caused by knowing the value of A. The attribute A with the

highest information gain, Gain(A), is chosen as the splitting attribute at nodeN.

Example 8.1 Induction of a decision tree using information gain. Table 8.1 presents a training set,

D, of class-labeled tuples randomly selected from the AllElectronics customer database. (The data are

adapted from Quinlan [Qui86]. In this example, each attribute is discretevalued. Continuous-valued

attributes have been generalized.) The class label attribute, buys computer, has two distinct values

(namely, fyes, nog); therefore, there are two distinct classes (i.e., m = 2). Let class C1 correspond to

yes and class C2 correspond to no.

There are nine tuples of class yes and five tuples of class no. A (root) node N is created for the tuples

in D. To find the splitting criterion for these tuples, we must compute the information gain of each

attribute. We first use Eq. (8.1) to compute the expected information needed to classify a tuple in D:

Next, we need to compute the expected information requirement for each attribute. Let’s start with

the attribute age.We need to look at the distribution of yes and no tuples for each category of age. For

the age category “youth,” there are two yes tuples and three no tuples. For the category “middle

aged,” there are four yes tuples and zero no tuples. For the category “senior,” there are three yes

tuples and two no tuples. Using Eq. (8.2), the expected information needed to classify a tuple in D if

the tuples are partitioned according to age is

Hence, the gain in information from such a partitioning would be

 Unit-IV

7

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Similarly, we can compute Gain.income/ D 0.029 bits, Gain.student/ D 0.151 bits, and Gain.credit

rating/ D 0.048 bits. Because age has the highest information gain among the attributes, it is selected

as the splitting attribute. Node N is labeled with age, and branches are grown for each of the

attribute’s values. The tuples are then partitioned accordingly, as shown in Figure 8.5. Notice that the

tuples falling into the partition for age D middle aged all belong to the same class. Because they all

belong to class “yes,” a leaf should therefore be created at the end of this branch and labeled “yes.”

The final decision tree returned by the algorithm was shown earlier in Figure 8.2.

“But how can we compute the information gain of an attribute that is continuousvalued,unlike in the

example?” Suppose, instead, that we have an attribute A that is continuous-valued, rather than

discrete-valued. (For example, suppose that instead of the discretized version of age from the

example, we have the raw values for this attribute.) For such a scenario, we must determine the “best”

split-point for A, where the split-point is a threshold on A.

We first sort the values of A in increasing order. Typically, the midpoint between each pair of

adjacent values is considered as a possible split-point. Therefore, given v values of A, then v -1

possible splits are evaluated. For example, the midpoint between the values ai and ai+1 of A is

The point with the minimum expected information requirement for A is selected as the split point for

A. D1 is the set of tuples in D satisfying A <=split point, and D2 is the set of tuples in D satisfying A

> split point.

Gain Ratio

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio, which attempts

to overcome this bias. It applies a kind of normalization to information gain using a “split

information” value defined analogously with Info(D) as

This value represents the potential information generated by splitting the training data set, D, into v

 Unit-IV

8

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

partitions, corresponding to the v outcomes of a test on attribute A. Note that, for each outcome, it

considers the number of tuples having that outcome with respect to the total number of tuples in D.

The gain ratio is defined as

The attribute with the maximum gain ratio is selected as the splitting attribute. Note,however, that as

the split information approaches 0, the ratio becomes unstable.

Example 8.2 Computation of gain ratio for the attribute income. A test on income splits the data of

Table 8.1 into three partitions, namely low, medium, and high, containing four, six, and four tuples,

respectively. To compute the gain ratio of income, we first use Eq. (8.5) to obtain

From Example 8.1, we have Gain(income) D 0.029. Therefore, GainRatio(income) =0.029/1.557 =

0.019.

Gini Index

The Gini index is used in CART. Using the notation previously described, the Gini index measures

the impurity of D, a data partition or set of training tuples, as

where pi is the probability that a tuple in D belongs to class Ci and is estimated by The

sum is computed over m classes.

The Gini index considers a binary split for each attribute. Let’s first consider the case where A is a

discrete-valued attribute having v distinct values, {a1, a2, … , av}, occurring in D. To determine the

best binary split on A, we examine all the possible subsets that can be formed using known values of

A. Each subset, SA, can be considered as a binary test for attribute A of the form “A SA?” Given a

tuple, this test is satisfied if the value of A for the tuple is among the values listed in SA. If A has v

possible values, then there are 2v possible subsets.

When considering a binary split, we compute a weighted sum of the impurity of each resulting

partition. For example, if a binary split on A partitions D into D1 and D2, the Gini index of D given

that partitioning is

For each attribute, each of the possible binary splits is considered. For a discrete-valued attribute, the

subset that gives the minimum Gini index for that attribute is selected as its splitting subset.

For continuous-valued attributes, each possible split-point must be considered. The strategy is similar

to that described earlier for information gain, where the midpoint between each pair of (sorted)

adjacent values is taken as a possible split-point.

The reduction in impurity that would be incurred by a binary split on a discrete- or continuous-valued

attribute A is

 Unit-IV

9

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

The attribute that maximizes the reduction in impurity (or, equivalently, has the minimum Gini index)

is selected as the splitting attribute.

Example 8.3 Induction of a decision tree using the Gini index. Let D be the training data shown

earlier in Table 8.1, where there are nine tuples belonging to the class buys computer =yes and the

remaining five tuples belong to the class buys computer = no. A (root) node N is created for the

tuples in D.We first use Eq. (8.7) for the Gini index to compute the impurity of D:

To find the splitting criterion for the tuples in D, we need to compute the Gini index for each

attribute. Let’s start with the attribute income and consider each of the possible splitting subsets.

Consider the subset {low, medium}. This would result in 10 tuples in partition D1 satisfying the

condition The remaining four tuples of D would be assigned to partition

D2. The Gini index value computed based on this partitioning is

Other Attribute Selection Measures

Many other attribute selection measures have been proposed. CHAID, a decision tree algorithm that

is popular in marketing, uses an attribute selection measure that is based on the statistical test for

independence. Other measures include C-SEP (which performs better than information gain and the

Gini index in certain cases) and G-statistic (an information theoretic measure that is a close

approximation to distribution).

Attribute selection measures based on the Minimum Description Length (MDL) principle

have the least bias toward multivalued attributes. MDL-based measures use encoding techniques to

define the “best” decision tree as the one that requires the fewest number of bits to both (1) encode

the tree and (2) encode the exceptions to the tree (i.e., cases that are not correctly classified by the

tree).

akkin
Highlight

 Unit-IV

10

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Other attribute selection measures consider multivariate splits (i.e., where the partitioning of

tuples is based on a combination of attributes, rather than on a single attribute).

Tree Pruning

When a decision tree is built, many of the branches will reflect anomalies in the training data

due to noise or outliers. Tree pruning methods address this problem of overfitting the data.

“How does tree pruning work?” There are two common approaches to tree pruning:

prepruning and postpruning.

In the prepruning approach, a tree is “pruned” by halting its construction early (e.g., by

deciding not to further split or partition the subset of training tuples at a given node).

The second and more common approach is postpruning, which removes subtrees from a

“fully grown” tree. A subtree at a given node is pruned by removing its branches and replacing it with

a leaf.

Alternatively, prepruning and postpruning may be interleaved for a combined approach. Postpruning

requires more computation than prepruning, yet generally leads to a more reliable tree. No single

pruning method has been found to be superior over all others.

Decision trees can suffer from repetition and replication (Figure 8.7), making themoverwhelming to

interpret. Repetition occurs when an attribute is repeatedly tested along a given branch of the tree. In

replication, duplicate subtrees exist within the tree.

 Unit-IV

11

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Scalability and Decision Tree Induction

“What if D, the disk-resident training set of class-labeled tuples, does not fit in memory? In other
words, how scalable is decision tree induction?” The efficiency of existing decision tree algorithms,

such as ID3, C4.5, and CART, has been well established for relatively small data sets. Efficiency

becomes an issue of concern when these algorithms are applied to the mining of very large real-world

databases.

RainForest, for example, adapts to the amount of main memory available and applies to any decision

tree induction algorithm. The method maintains an AVC-set (where “AVC” stands for “Attribute-
Value, Classlabel”) for each attribute, at each tree node, describing the training tuples at the node.

The AVC-set of an attribute A at node N gives the class label counts for each value of A for the tuples

at N. The set of all AVC-sets at a node N is the AVC-group of N. The size of an AVC-set for

attribute A at node N depends only on the number of distinct values of A and the number of classes in

the set of tuples at N. Typically, this size should fit in memory, even for real-world data. RainForest

also has techniques, however, for handling the case where the AVC-group does not fit in memory.

BOAT (Bootstrapped Optimistic Algorithm for Tree construction) is a decision tree algorithm that

takes a completely different approach to scalability—it is not based on the use of any special data

structures. Instead, it uses a statistical technique known as “bootstrapping” to create several smaller

samples (or subsets) of the given training data, each of which fits in memory. Each subset is used to

construct a tree, resulting in several trees. The trees are examined and used to construct a new tree,

T0, that turns out to be “very close” to the tree that would have been generated if all the original

training data had fit in memory.

 Unit-IV

12

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

BOAT can use any attribute selection measure that selects binary splits and that is based on the notion

of purity of partitions such as the Gini index. BOAT uses a lower bound on the attribute selection

measure to detect if this “very good” tree, T0, is different from the “real” tree, T, that would have

been generated using all of the data. It refines T0 to arrive at T. BOAT usually requires only two

scans of D. This is quite an improvement, even in comparison to traditional decision tree algorithms.

Visual Mining for Decision Tree Induction

“Are there any interactive approaches to decision tree induction that allow us to visualize the data

and the tree as it is being constructed? Can we use any knowledge of our data to help in building the
tree?” In this section, you will learn about an approach to decision tree induction that supports these

options. Perception-based classification (PBC) is an interactive approach based on

multidimensional visualization techniques and allows the user to incorporate background knowledge

about the data when building a decision tree. By visually interacting with the data, the user is also

likely to develop a deeper understanding of the data. The resulting trees tend to be smaller than those

built using traditional decision tree induction methods and so are easier to interpret, while achieving

about the same accuracy. The trees constructed with PBC were compared with trees generated by the

CART, C4.5, and SPRINT algorithms from various data sets.

Bayes Classification Methods

“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can predict class

membership probabilities such as the probability that a given tuple belongs to a particular class.

Na¨ıve Bayesian classifiers assume that the effect of an attribute value on a given class is independent

of the values of the other attributes. This assumption is called class- conditional independence.

Bayes’ Theorem

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who did early

work in probability and decision theory during the 18th century. Let X be a data tuple. In Bayesian

terms, X is considered “evidence.” As usual, it is described by measurements made on a set of n
attributes. Let H be some hypothesis such as that the data tuple X belongs to a specified class C. For

classification problems, we want to determine P(H|X), the probability that the hypothesis H holds

given the “evidence” or observed data tuple X. In other words, we are looking for the probability that

tuple X belongs to class C, given that we know the attribute description of X.

 Unit-IV

13

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

P(H|X) is the posterior probability, or a posteriori probability, of H conditioned on X. For example,

suppose our world of data tuples is confined to customers described by the attributes age and income,

respectively, and that X is a 35-year-old customer with an income of $40,000. Suppose that H is the

hypothesis that our customer will buy a computer. Then P(H|X) reflects the probability that customer

X will buy a computer given that we know the customer’s age and income.

In contrast, P(H) is the prior probability, or a priori probability, of H. For our example, this is the

probability that any given customer will buy a computer, regardless of age, income, or any other

information, for that matter.

Similarly, P(X|H) is the posterior probability of X conditioned on H. That is, it is the probability that

a customer, X, is 35 years old and earns $40,000, given that we know the customer will buy a

computer.

P(X) is the prior probability of X. Using our example, it is the probability that a person from our set

of customers is 35 years old and earns $40,000.

Na¨ıve Bayesian Classification

The na¨ıve Bayesian classifier, or simple Bayesian classifier, works as follows:

1. Let D be a training set of tuples and their associated class labels. As usual, each tuple is

represented by an n-dimensional attribute vector, X =(x1, x2,... , xn), depicting n measurements made

on the tuple from n attributes, respectively, A1, A2,.... , An.

2. Suppose that there are m classes, C1, C2,.... , Cm. Given a tuple, X, the classifier will predict that X

belongs to the class having the highest posterior probability, conditioned on X. That is, the na¨ıve

Bayesian classifier predicts that tuple X belongs to the class Ci if and only if

Thus, we maximize P(Ci|X). The class Ci for which P(Ci|X) is maximized is called the maximum
posteriori hypothesis. By Bayes’ theorem (Eq. 8.10),

3. As P(X) is constant for all classes, only P(X|Ci)P(Ci) needs to be maximized. If the class prior

probabilities are not known, then it is commonly assumed that the classes are equally likely, that is,

P(C1)= P(C2) = … = P(Cm), and we would therefore maximize P(X|Ci). Otherwise, we maximize

P(X|Ci)P(Ci). Note that the class prior probabilities may be estimated by P(Ci) =|Ci,D|/|D|, where

|Ci,D| is the number of training tuples of class Ci in D.

4. Given data sets with many attributes, it would be extremely computationally expensive to compute

P(X|Ci). To reduce computation in evaluating P(X|Ci), the na¨ıve assumption of class-conditional

independence is made. This presumes that the attributes’ values are conditionally independent of one

another, given the class label of the tuple (i.e., that there are no dependence relationships among the

attributes). Thus,

 Unit-IV

14

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

We can easily estimate the probabilities from the training tuples.

Recall that here xk refers to the value of attribute Ak for tuple X. For each attribute, we look at

whether the attribute is categorical or continuous-valued.

For instance, to compute P(X|Ci), we consider the following:

(a) If Ak is categorical, then P(xk|Ci), is the number of tuples of class Ci in D having the value xk for

Ak, divided by |Ci,D|, the number of tuples of class Ci in D.

(b) If Ak is continuous-valued, then we need to do a bit more work, but the calculation is pretty

straightforward. A continuous-valued attribute is typically assumed to have a Gaussian distribution

with a mean and standard deviation , defined by

For example, let X = (35,$40,000), where A1 and A2 are the attributes age and income, respectively.

Let the class label attribute be buys_computer. The associated class label for X is yes (i.e.,

buys_computer = yes). Let’s suppose that age has not been discretized and therefore exists as a

continuous-valued attribute. Suppose that from the training set, we find that customers in D who buy

a computer are 38+-12 years of age. In other words, for attribute age and this class, we have = 38

years and = 12. We can plug these quantities, along with x1 = 35 for our tuple X, into Eq. (8.13) to

estimate P(age = 35|buys_computer = yes).
5. To predict the class label of X, P(X|Ci)P(Ci) is evaluated for each class Ci . The classifier predicts

that the class label of tuple X is the class Ci if and only if

In other words, the predicted class label is the class Ci for which P(X|Ci)P(Ci) is the maximum.

“How effective are Bayesian classifiers?”
In theory, Bayesian classifiers have the minimum error rate in comparison to all other classifiers.

However, in practice this is not always the case, owing to inaccuracies in the assumptions made for

its use, such as class-conditional independence, and the lack of available probability data.

Example 8.4 Predicting a class label using na¨ıve Bayesian classification. We wish to predict the

class label of a tuple using na¨ıve Bayesian classification, given the same training data as in Example

8.3 for decision tree induction. The training data were shown earlier in Table 8.1. The data tuples are

 Unit-IV

15

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

described by the attributes age, income, student, and credit rating. The class label attribute, buys
computer, has two distinct values (namely, {yes, no}). Let C1 correspond to the class

buys_computer= yes and C2 correspond to buys_computer = no. The tuple we wish to classify is

what happens if we should end up with a probability value of zero for some P(xk|Ci)?

There is a simple trick to avoid this problem. We can assume that our training database, D, is so large

that adding one to each count that we need would only make a negligible difference in the estimated

probability value, yet would conveniently avoid the case of probability values of zero. This technique

for probability estimation is known as the Laplacian correction or Laplace estimator.

 Unit-IV

16

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Rule-Based Classification

Using IF-THEN Rules for Classification

A rule-based classifier uses a set of IF-THEN rules for classification. An IF-THEN rule is an

expression of the form

IF condition THEN conclusion.

An example is rule R1,

R1: IF age =youth AND student =yes THEN buys computer = yes.

The “IF” part (or left side) of a rule is known as the rule antecedent or precondition. The “THEN”

part (or right side) is the rule consequent. In the rule antecedent, the condition consists of one or

more attribute tests (e.g., age = youth and student = yes) that are logically ANDed. The rule’s

consequent contains a class prediction (in this case, we are predicting whether a customer will buy a

computer). R1 can also be written as

R1: (age = youth) ^ (student = yes) (buys_computer = yes).

If the condition (i.e., all the attribute tests) in a rule antecedent holds true for a given tuple, we say

that the rule antecedent is satisfied (or simply, that the rule is satisfied) and that the rule covers the

tuple.

A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a classlabeled data set,

D, let ncovers be the number of tuples covered by R; ncorrect be the number of tuples correctly

classified by R; and |D|1 be the number of tuples in D. We can define the coverage and accuracy of

R as

That is, a rule’s coverage is the percentage of tuples that are covered by the rule.

Example 8.6 Rule accuracy and coverage. Let’s go back to our data in Table 8.1. These are

classlabeled

tuples from the AllElectronics customer database. Our task is to predict whether a customer will buy a

computer. Consider rule R1, which covers 2 of the 14 tuples. It can correctly classify both tuples.

Therefore, coverage(R1)= 2/14 = 14.28% and accuracy(R1) = 2/2 = 100%.

If a rule is satisfied by X, the rule is said to be triggered. For example, suppose we have

We would like to classify X according to buys computer. X satisfies R1, which triggers the rule.

akkin
Highlight

akkin
Highlight

 Unit-IV

17

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

If R1 is the only rule satisfied, then the rule fires by returning the class prediction for X. Note that

triggering does not always mean firing because there may be more than one rule that is satisfied! If

more than one rule is triggered, we have a potential problem. What if they each specify a different

class? Or what if no rule is satisfied by X?

We tackle the first question. If more than one rule is triggered, we need a conflict resolution strategy

to figure out which rule gets to fire and assign its class prediction to X. There are many possible

strategies. We look at two, namely size ordering and rule ordering.

The size ordering scheme assigns the highest priority to the triggering rule that has the “toughest”

requirements, where toughness is measured by the rule antecedent size. That is, the triggering rule

with the most attribute tests is fired.

The rule ordering scheme prioritizes the rules beforehand. The ordering may be class-based or rule-
based. With class-based ordering, the classes are sorted in order of decreasing “importance” such as

by decreasing order of prevalence. That is, all the rules for the most prevalent (or most frequent) class

come first, the rules for the next prevalent class come next, and so on.

With rule-based ordering, the rules are organized into one long priority list, according to some

measure of rule quality, such as accuracy, coverage, or size (number of attribute tests in the rule

antecedent), or based on advice from domain experts. When rule ordering is used, the rule set is

known as a decision list.

Note that in the first strategy, overall the rules are unordered. They can be applied in any order when

classifying a tuple. That is, a disjunction (logical OR) is implied between each of the rules. Each rule

represents a standalone nugget or piece of knowledge. This is in contrast to the rule ordering

(decision list) scheme for which rules must be applied in the prescribed order so as to avoid conflicts.

Each rule in a decision list implies the negation of the rules that come before it in the list. Hence,

rules in a decision list are more difficult to interpret. Now that we have seen how we can handle

conflicts, let’s go back to the scenario where there is no rule satisfied by X. How, then, can we

determine the class label of X? In this case, a fallback or default rule can be set up to specify a

default class, based on a training set. This may be the class in majority or the majority class of the

tuples that were not covered by any rule. The default rule is evaluated at the end, if and only if no

other rule covers X.

Rule Extraction from a Decision Tree

it is easy to understand how decision trees work and they are known for their accuracy.

Decision trees can become large and difficult to interpret. In this subsection, we look at how to build

a rulebased classifier by extracting IF-THEN rules from a decision tree. In comparison with a

decision tree, the IF-THEN rules may be easier for humans to understand, particularly if the decision

tree is very large.

To extract rules from a decision tree, one rule is created for each path from the root to a leaf

node. Each splitting criterion along a given path is logically ANDed to form the rule antecedent (“IF”

part). The leaf node holds the class prediction, forming the rule consequent (“THEN” part).

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

 Unit-IV

18

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

A disjunction (logical OR) is implied between each of the extracted rules. Because the rules

are extracted directly from the tree, they are mutually exclusive and exhaustive. Mutually exclusive
means that we cannot have rule conflicts here because no two rules will be triggered for the same

tuple. (We have one rule per leaf, and any tuple can map to only one leaf.) Exhaustive means there is

one rule for each possible attribute–value combination, so that this set of rules does not require a

default rule. Therefore, the order of the rules does not matter—they are unordered.

“How can we prune the rule set?” For a given rule antecedent, any condition that does not

improve the estimated accuracy of the rule can be pruned (i.e., removed), thereby generalizing the

rule. C4.5 extracts rules from an unpruned tree, and then prunes the rules using a pessimistic

approach similar to its tree pruning method. The training tuples and their associated class labels are

used to estimate rule accuracy. However, because this would result in an optimistic estimate,

alternatively, the estimate is adjusted to compensate for the bias, resulting in a pessimistic estimate.

Other problems arise during rule pruning, however, as the rules will no longer be mutually

exclusive and exhaustive. For conflict resolution, C4.5 adopts a class-based ordering scheme. It

groups together all rules for a single class, and then determines a ranking of these class rule sets.

Within a rule set, the rules are not ordered.

Rule Induction Using a Sequential Covering Algorithm

IF-THEN rules can be extracted directly from the training data (i.e., without having to

generate a decision tree first) using a sequential covering algorithm. The name comes from the

notion that the rules are learned sequentially (one at a time), where each rule for a given class will

ideally cover many of the class’s tuples (and hopefully none of the tuples of other classes).

akkin
Highlight

akkin
Highlight

akkin
Highlight

 Unit-IV

19

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

The general strategy is as follows. Rules are learned one at a time. Each time a rule is learned, the

tuples covered by the rule are removed, and the process repeats on the remaining tuples. This

sequential learning of rules is in contrast to decision tree induction. Because the path to each leaf in a

decision tree corresponds to a rule, we can consider decision tree induction as learning a set of rules

simultaneously.

“How are rules learned?” Typically, rules are grown in a general-to-specific manner (Figure

8.11). We can think of this as a beam search, where we start off with an empty rule and then

gradually keep appending attribute tests to it. We append by adding the attribute test as a logical

conjunct to the existing condition of the rule antecedent. Suppose our training set, D, consists of loan

application data. Attributes regarding each

applicant include their age, income, education level, residence, credit rating, and the term of the loan.

The classifying attribute is loan decision, which indicates whether a loan is accepted (considered

safe) or rejected (considered risky). To learn a rule for the class “accept,” we start off with the most

general rule possible, that is, the condition of the rule antecedent is empty. The rule is

IF THEN loan_decision = accept.
We then consider each possible attribute test that may be added to the rule. These can be derived from

the parameter Att_vals, which contains a list of attributes with their associated values. For example,

for an attribute–value pair (att, val), we can consider attribute tests such as att = val, att <= val, att >

val, and so on. Typically, the training data will contain many attributes, each of which may have

several possible values. Finding an optimal rule set becomes computationally explosive. Instead,

Learn One Rule adopts a greedy depth-first strategy. Each time it is faced with adding a new attribute

test (conjunct) to the current rule, it picks the one that most improves the rule quality, based on the

training samples.

so that the current rule becomes

IF income = high THEN loan_decision = accept.

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

 Unit-IV

20

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Each time we add an attribute test to a rule, the resulting rule should cover relatively more of the

“accept” tuples. During the next iteration, we again consider the possible attribute tests and end up

selecting credit_rating = excellent. Our current rule grows to become

IF income = high AND credit rating = excellent THEN loan decision = accept.

The process repeats, where at each step we continue to greedily grow rules until the resulting rule

meets an acceptable quality level.

Rule Quality Measures

Learn One Rule needs a measure of rule quality. Every time it considers an attribute test, it must

check to see if appending such a test to the current rule’s condition will result in an improved rule.

Example 8.8 Choosing between two rules based on accuracy. Consider the two rules as illustrated

in Figure 8.12. Both are for the class loan decision D accept. We use “a” to represent the tuples of

class “accept” and “r” for the tuples of class “reject.” Rule R1 correctly classifies 38 of the 40 tuples

it covers. Rule R2 covers only two tuples, which it correctly classifies. Their respective accuracies are

95% and 100%. Thus, R2 has greater accuracy than R1, but it is not the better rule because of its

small coverage.

Our current rule is R: IF condition THEN class = c. We want to see if logically ANDing a given

attribute test to condition would result in a better rule.We call the new condition, condition0, where

R0: IF condition0 THEN class = c is our potential new rule. In other words, we want to see if R0 is

any better than R.

Another measure is based on information gain and was proposed in FOIL (First Order Inductive

Learner), a sequential covering algorithm that learns first-order logic rules. Learning first-order rules

is more complex because such rules contain variables, whereas the rules we are concerned with in this

section are propositional (i.e., variablefree).

FOIL assesses the information gained by extending condition0 as

 Unit-IV

21

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

It favors rules that have high accuracy and cover many positive tuples.

Rule Pruning

Learn One Rule does not employ a test set when evaluating rules. Assessments of rule quality as

described previously are made with tuples from the original training data. These assessments are

optimistic because the rules will likely overfit the data. That is, the rules may perform well on the

training data, but less well on subsequent data. To compensate for this, we can prune the rules. rule is

pruned by removing a conjunct

(attribute test). We choose to prune a rule, R, if the pruned version of R has greater quality, as

assessed on an independent set of tuples.

FOIL uses a simple yet effective method. Given a rule, R,

where pos and neg are the number of positive and negative tuples covered by R, respectively. This

value will increase with the accuracy of R on a pruning set. Therefore, if the FOIL_Prune value is

higher for the pruned version of R, then we prune R.

Model Evaluation and Selection

But what is accuracy? How can we estimate it? Are some measures of a classifier’s accuracy

more appropriate than others?How can we obtain a reliable accuracy estimate? Answers to these

questions can find here What if we have more than one classifier and want to choose the “best” one?

This is referred to as model selection (i.e., choosing one classifier over another).

Metrics for Evaluating Classifier Performance

Here, measures for assessing how good or how “accurate” your classifier is at predicting the

class label of tuples. They include accuracy (also known as recognition rate), sensitivity (or recall),

specificity, precision,

F1, and . Note that although accuracy is a specific measure, the word “accuracy” is also used as a

general term to refer to a classifier’s predictive abilities.

Using training data to derive a classifier and then estimate the accuracy of the resulting

learned model can result in misleading overoptimistic estimates due to overspecialization of the

learning algorithm to the data. Recall that we can talk in terms of positive tuples (tuples of the main

class of interest) and negative tuples (all other tuples). Given two classes, for example, the positive

tuples may be buys computer = yes while the negative tuples are buys computer = no. Suppose we use

our classifier on a test set of labeled tuples. P is the number of positive tuples and N is the number of

negative tuples. For each tuple, we compare the classifier’s class label prediction with the tuple’s

known class label.

 Unit-IV

22

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

True positives (TP): These refer to the positive tuples that were correctly labeled by the classifier.

Let TP be the number of true positives.

True negatives (TN): These are the negative tuples that were correctly labeled by the classifier. Let

TN be the number of true negatives.

False positives (FP): These are the negative tuples that were incorrectly labeled as positive (e.g.,

tuples of class buys computer = no for which the classifier predicted buys computer = yes). Let FP be

the number of false positives.

False negatives (FN): These are the positive tuples that were mislabeled as negative (e.g., tuples of

class buys computer = yes for which the classifier predicted buys computer = no). Let FN be the

number of false negatives.

These terms are summarized in the confusion matrix of Figure 8.14.

The confusion matrix is a useful tool for analyzing how well your classifier can recognize tuples of

different classes. TP and TN tell us when the classifier is getting things right, while FP and FN tell us

when the classifier is getting things wrong (i.e., mislabeling). Given m classes (where m >= 2), a

confusion matrix is a table of at least size m by m. An entry, CMi,j in the first m rows and m columns

indicates the number of tuples of class i that were labeled by the classifier as class j. For a classifier to

have good accuracy, ideally most of the tuples would be represented along the diagonal of the

confusion matrix, from entry CM1,1 to entry CMm,m, with the rest of the entries being zero or close

to zero. That is, ideally, FP and FN are around zero.

The accuracy of a classifier on a given test set is the percentage of test set tuples that are correctly

classified by the classifier. That is,

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

 Unit-IV

23

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

In the pattern recognition literature, this is also referred to as the overall recognition rate of the

classifier, that is, it reflects how well the classifier recognizes tuples of the various classes. An

example of a confusion matrix for the two classes buys computer = yes (positive) and buys computer
= no (negative) is given in Figure 8.15.

error rate or misclassification rate of a classifier, M, which is simply 1- accuracy(M), where

accuracy(M) is the accuracy of M. This also can be computed as

If we were to use the training set (instead of a test set) to estimate the error rate of a model,

this quantity is known as the resubstitution error. This error estimate is optimistic of the true error

rate (and similarly, the corresponding accuracy estimate is optimistic) because the model is not tested

on any samples that it has not already seen.

We now consider the class imbalance problem, where the main class of interest is rare. That

is, the data set distribution reflects a significant majority of the negative class and a minority positive

class. For example, in fraud detection applications, the class of interest (or positive class) is “fraud,”

which occurs much less frequently than the negative “nonfraudulant” class. In medical data, there

may be a rare class, such as “cancer.” Suppose that you have trained a classifier to classify medical

data tuples, where the class label attribute is “cancer” and the possible class values are “yes” and

“no.” An accuracy rate of, say, 97% may make the classifier seem quite accurate, but what if only,

say, 3% of the training tuples are actually cancer? Clearly, an accuracy rate of 97% may not be

acceptable—the classifier could be correctly labeling only the noncancer tuples, for instance, and

misclassifying all the cancer tuples. Instead, we need other measures, which access how well the

akkin
Highlight

akkin
Highlight

akkin
Highlight

akkin
Highlight

 Unit-IV

24

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

classifier can recognize the positive tuples (cancer = yes) and how well it can recognize the negative

tuples (cancer = no).

The sensitivity and specificity measures can be used, respectively, for this purpose.

Sensitivity is also referred to as the true positive (recognition) rate (i.e., the proportion of positive

tuples that are correctly identified), while specificity is the true negative rate (i.e., the proportion of

negative tuples that are correctly identified). These measures are defined as

It can be shown that accuracy is a function of sensitivity and specificity:

Example 8.9 Sensitivity and specificity. Figure 8.16 shows a confusion matrix for medical data

where the class values are yes and no for a class label attribute, cancer. The sensitivity of the

classifier is 90/300 = 30.00%. The specificity is 9560/9700= 98.56%. The classifier’s overall

accuracy is 9650/10,000= 96.50%. Thus, we note that although the classifier has a high accuracy, it’s

ability to correctly label the positive (rare) class is poor given its low sensitivity. It has high

specificity, meaning that it can accurately recognize negative tuples.

The precision and recall measures are also widely used in classification. Precision can be

thought of as a measure of exactness (i.e., what percentage of tuples labeled as positive are actually

such), whereas recall is a measure of completeness (what percentage of positive tuples are labeled as

such). If recall seems familiar, that’s because it is the same as sensitivity (or the true positive rate).

These measures can be computed as

Example 8.10 Precision and recall. The precision of the classifier in Figure 8.16 for the yes class is

90/230 = 39.13%. The recall is 90/300= 30.00%.

akkin
Highlight

akkin
Highlight

akkin
Highlight

 Unit-IV

25

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

A perfect precision score of 1.0 for a class C means that every tuple that the classifier labeled

as belonging to class C does indeed belong to class C. However, it does not tell us anything about the

number of class C tuples that the classifier mislabeled. A perfect recall score of 1.0 for C means that

every item from class C was labeled as such, but it does not tell us how many other tuples were

incorrectly labeled as belonging to class C. There tends to be an inverse relationship between

precision and recall, where it is possible to increase one at the cost of reducing the other. For

example, our medical classifier may achieve high precision by labeling all cancer tuples that present a

certain way as cancer, but may have low recall if it mislabels many other instances of cancer tuples.

Precision and recall scores are typically used together, where precision values are compared for a

fixed value of recall, or vice versa. For example, we may compare precision values at a recall value

of, say, 0.75.

An alternative way to use precision and recall is to combine them into a single measure. This

is the approach of the F measure (also known as the F1 score or F-score) and the measure. They

are defined as

where is a non-negative real number. The F measure is the harmonic mean of precision and recall

(the proof of which is left as an exercise). It gives equal weight to precision and recall. The

measure is a weighted measure of precision and recall. It assigns times as much weight to recall as

to precision. Commonly used measures are F2 (which weights recall twice as much as precision)

and F0.5 (which weights precision twice as much as recall).

“Are there other cases where accuracy may not be appropriate?” In classification problems,

it is commonly assumed that all tuples are uniquely classifiable, that is, that each training tuple can

belong to only one class. Yet, owing to the wide diversity of data in large databases, it is not always

reasonable to assume that all tuples are uniquely classifiable. Rather, it is more probable to assume

that each tuple may belong to more than one class. How then can the accuracy of classifiers on large

databases be measured? The accuracy measure is not appropriate, because it does not take into

account the possibility of tuples belonging to more than one class.

In addition to accuracy-based measures, classifiers can also be compared with respect to the

following additional aspects:

Speed: This refers to the computational costs involved in generating and using the given classifier.

Robustness: This is the ability of the classifier to make correct predictions given noisy data or data

with missing values. Robustness is typically assessed with a series of synthetic data sets representing

increasing degrees of noise and missing values.

Scalability: This refers to the ability to construct the classifier efficiently given large amounts of

data. Scalability is typically assessed with a series of data sets of increasing size.

Interpretability: This refers to the level of understanding and insight that is provided by the

classifier or predictor. Interpretability is subjective and therefore more difficult to assess.

akkin
Highlight

 Unit-IV

26

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

In summary, we have presented several evaluation measures. The accuracy measure works best when

the data classes are fairly evenly distributed. Other measures, such as sensitivity (or recall),

specificity, precision, F, and , are better suited to the class imbalance problem, where the main

class of interest is rare.

Holdout Method and Random Subsampling

The holdout method is what we have alluded to so far in our discussions about accuracy. In

this method, the given data are randomly partitioned into two independent sets, a training set and a

test set. Typically, two-thirds of the data are allocated to the training set, and the remaining one-third

is allocated to the test set. The training set is used to derive the model. The model’s accuracy is then

estimated with the test set

Random subsampling is a variation of the holdout method in which the holdout method is

repeated k times. The overall accuracy estimate is taken as the average of the accuracies obtained

from each iteration.

Cross-Validation

In k-fold cross-validation, the initial data are randomly partitioned into k mutually exclusive

subsets or “folds,” D1, D2, ... , Dk, each of approximately equal size. Training and testing is

performed k times. In iteration i, partition Di is reserved as the test set, and the remaining partitions

are collectively used to train the model. That is, in the first iteration, subsets D2, ... , Dk collectively

serve as the training set to obtain a first model, which is tested on D1; the second iteration is trained

on subsets D1, D3, ... , Dk and tested on D2; and so on. Unlike the holdout and random subsampling

methods, here each sample is used the same number of times for training and once for testing. For

classification, the accuracy estimate is the overall number of correct classifications from the k
iterations, divided by the total number of tuples in the initial data.

 Leave-one-out is a special case of k-fold cross-validation where k is set to the number of

initial tuples. That is, only one sample is “left out” at a time for the test set. In stratified cross-

validation, the folds are stratified so that the class distribution of the tuples in each fold is

approximately the same as that in the initial data.

 In general, stratified 10-fold cross-validation is recommended for

estimating accuracy (even if computation power allows using more folds) due to its relatively low

bias and variance.

 Unit-IV

27

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Bootstrap

 the bootstrap method samples the given training tuples uniformly with replacement. That is,

each time a tuple is selected, it is equally likely to be selected again and re-added to the training set.

For instance, imagine a machine that randomly selects tuples for our training set. In sampling with
replacement, the machine is allowed to select the same tuple more than once.

There are several bootstrap methods. A commonly used one is the .632 bootstrap, which

works as follows. Suppose we are given a data set of d tuples. The data set is sampled d times, with

replacement, resulting in a bootstrap sample or training set of d samples. It is very likely that some of

the original data tuples will occur more than once in this sample. The data tuples that did not make it

into the training set end up forming the test set. Suppose we were to try this out several times. As it

turns out, on average, 63.2% of the original data tuples will end up in the bootstrap sample, and the

remaining 36.8% will form the test set (hence, the name, .632 bootstrap).

“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d of being

selected, so the probability of not being chosen is . We have to select d times, so the

probability that a tuple will not be chosen during this whole time is . If d is large, the

probability approaches e-1 = 0.368. Thus, 36.8% of tuples will not be selected for training and thereby

end up in the test set, and the remaining 63.2% will form the training set.

We can repeat the sampling procedure k times, where in each iteration, we use the current test

set to obtain an accuracy estimate of the model obtained from the current bootstrap sample. The

overall accuracy of the model, M, is then estimated as

where Acc(Mi)test set is the accuracy of the model obtained with bootstrap sample i when it is applied

to test set i. Acc(Mi)train set is the accuracy of the model obtained with bootstrap sample i when it is

applied to the original set of data tuples. Bootstrapping tends to be overly optimistic. It works best

with small data sets.

Model Selection Using Statistical Tests of Significance

Suppose that we have generated two classification models, M1 and M2, from our data. We

have performed 10-fold cross-validation to obtain a mean error rate8 for each. How can we determine

which model is best? It may seem intuitive to select the model with the lowest error rate; however,

the mean error rates are just estimates of error on the true population of future data cases. There can

be considerable variance between error rates within any given 10-fold cross-validation experiment.

Although the mean error rates obtained for M1 and M2 may appear different, that difference may not

be statistically significant. What if any difference between the two may just be attributed to chance?

What do we need to perform the statistical test? Suppose that for each model, we did 10-fold

cross-validation, say, 10 times, each time using a different 10-fold data partitioning. Each partitioning

is independently drawn. We can average the 10 error rates obtained each forM1 and M2, respectively,

 Unit-IV

28

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

to obtain the mean error rate for each model. For a given model, the individual error rates calculated

in the cross-validations may be considered as different, independent samples from a probability

distribution. In general, they follow a t-distribution with k -1 degrees of freedom where, here, k = 10.

(This distribution looks very similar to a normal, or Gaussian, distribution even though the functions

defining the two are quite different. Both are unimodal, symmetric, and bellshaped.) This allows us to

do hypothesis testing where the significance test used is the t-test, or Student’s t-test. Our hypothesis

is that the two models are the same, or in other words, that the difference in mean error rate between

the two is zero. If we can reject this hypothesis (referred to as the null hypothesis), then we can

conclude that the difference between the two models is statistically significant, in which case we can

select the model with the lower error rate.

 In data mining practice, we may often employ a single test set, that is, the same test set can be

used for both M1 and M2. In such cases, we do a pairwise comparison of the two models for each
10-fold cross-validation round. That is, for the ith round of 10-fold cross-validation, the same cross-

validation partitioning is used to obtain an error rate for M1 and for M2.

 To determine whetherM1 andM2 are significantly different, we compute t and select a

significance level, sig. In practice, a significance level of 5% or 1% is typically used. We then

consult a table for the t-distribution
However, because the t-distribution is symmetric, typically only the upper percentage points

of the distribution are shown. Therefore, we look up the table value for z = sig/2, which in this case is

0.025, where z is also referred to as a confidence limit. If t > z or t < -z, then our value of t lies in the

rejection region, within the distribution’s tails. This means that we can reject the null hypothesis that

the means of M1 and M2 are the same and conclude that there is a statistically significant difference

between the two models. Otherwise, if we cannot reject the null hypothesis, we conclude that any

difference between M1 and M2 can be attributed to chance.

 If two test sets are available instead of a single test set, then a nonpaired version of the t -test

is used, where the variance between the means of the two models is estimated as

and k1 and k2 are the number of cross-validation samples (in our case, 10-fold crossvalidation

rounds) used for M1 and M2, respectively. This is also known as the two sample t-test.

Comparing Classifiers Based on Cost–Benefit and ROC Curves

 The true positives, true negatives, false positives, and false negatives are also useful in

assessing the costs and benefits (or risks and gains) associated with a classification model. The cost

associated with a false negative (such as incorrectly predicting that a cancerous patient is not

cancerous) is far greater than those of a false positive (incorrectly yet conservatively labeling a

noncancerous patient as cancerous). In such cases, we can outweigh one type of error over another by

assigning a different cost to each. These costs may consider the danger to the patient, financial costs

of resulting therapies, and other hospital costs. Similarly, the benefits associated with a true positive

decision may be different than those of a true negative. Up to now, to compute classifier accuracy, we

 Unit-IV

29

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

have assumed equal costs and essentially divided the sum of true positives and true negatives by the

total number of test tuples.

 Receiver operating characteristic curves are a useful visual tool for comparing two

classification models. ROC curves come from signal detection theory that was developed during

World War II for the analysis of radar images. An ROC curve for a given model shows the trade-off

between the true positive rate (TPR) and the false positive rate (FPR).10 Given a test set and a

model, TPR is the proportion of positive (or “yes”) tuples that are correctly labeled by the model;

FPR is the proportion of negative (or “no”) tuples that are mislabeled as positive. Given that TP, FP,

P, and N are the number of true positive, false positive, positive, and negative tuples, respectively,

fromSection 8.5.1 we know that TPR= TP/ P , which is sensitivity. Furthermore, FPR = FP/N ,

which is 1-specificity.

For a two-class problem, an ROC curve allows us to visualize the trade-off between the rate at

which the model can accurately recognize positive cases versus the rate at which it mistakenly

identifies negative cases as positive for different portions of the test set. Any increase in TPR occurs

at the cost of an increase in FPR. The area under the ROC curve is a measure of the accuracy of the

model.

To plot an ROC curve for a given classification model, M, the model must be able to return a

probability of the predicted class for each test tuple. With this information, we rank and sort the

tuples so that the tuple that is most likely to belong to the positive or “yes” class appears at the top of

the list, and the tuple that is least likely to belong to the positive class lands at the bottomof the list.

Example 8.11 Plotting an ROC curve. Figure 8.18 shows the probability value (column 3) returned

by a probabilistic classifier for each of the 10 tuples in a test set, sorted by decreasing probability

order. Column 1 is merely a tuple identification number, which aids in our explanation. Column 2 is

the actual class label of the tuple. There are five positive tuples and five negative tuples, thus P = 5

and N = 5. As we examine the known class label of each tuple, we can determine the values of the

remaining columns, TP, FP, TN, FN, TPR, and FPR. We start with tuple 1, which has the highest

probability score, and take that score as our threshold, that is, t = 0.9. Thus, the classifier considers

tuple 1 to be positive, and all the other tuples are considered negative. Since the actual class label of

tuple 1 is positive, we have a true positive, hence TP = 1 and FP = 0. Among the

 Unit-IV

30

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

 remaining nine tuples, which are all classified as negative, five actually are negative (thus, TN
= 5). The remaining four are all actually positive, thus, FN = 4. We can therefore compute TPR =

TP/P= 1/5= 0.2, while FPR = 0. Thus, we have the point (0.2,0) for the ROC curve.

Next, threshold t is set to 0.8, the probability value for tuple 2, so this tuple is now also

considered positive, while tuples 3 through 10 are considered negative. The actual class label of tuple

2 is positive, thus now TP = 2. The rest of the row can easily be computed, resulting in the point

(0.4,0). Next, we examine the class label of tuple 3 and let t be 0.7, the probability value returned by

the classifier for that tuple. Thus, tuple 3 is considered positive, yet its actual label is negative, and so

it is a false positive. Thus, TP stays the same and FP increments so that FP = 1. The rest of the values

in the row can also be easily computed, yielding the point (0.4, 0.2). The resulting ROC graph, from

examining each tuple, is the jagged line shown in Figure 8.19.

The diagonal line representing random guessing is also shown. Thus, the closer the ROC curve of a

model is to the diagonal line, the less accurate the model. If the model is really good, initially we are

more likely to encounter true positives as we move down the ranked list. Thus, the curve moves

steeply up from zero. Later, as we start to encounter fewer and fewer true positives, and more and

more false positives, the curve eases off and becomes more horizontal.

 Unit-IV

31

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Techniques to Improve Classification Accuracy

In this section, you will learn some tricks for increasing classification accuracy. We focus on

ensemble methods. An ensemble for classification is a composite model, made up of a combination of

classifiers. The individual classifiers vote, and a class label prediction is returned by the ensemble

based on the collection of votes. Ensembles tend to be more accurate than their component classifiers.

Traditional learning models assume that the data classes are well distributed. In many real-

world data domains, however, the data are class-imbalanced, where the main class of interest is

represented by only a few tuples. This is known as the class imbalance problem.

Introducing Ensemble Methods

 An ensemble tends to be more accurate than its base classifiers. For example, consider an

ensemble that performs majority voting. That is, given a tuple X to classify, it collects the class label

predictions returned fromthe base classifiers and outputs the class in majority. The base classifiers

may make mistakes, but the ensemble will misclassify X only if over half of the base classifiers are in

error. Ensembles yield better results when there is significant diversity among the models. That is,

ideally, there is little correlation among classifiers. The classifiers should also perform better than

random guessing. Each base classifier can be allocated to a different CPU and so ensemble methods

are parallelizable.

 To help illustrate the power of an ensemble, consider a simple two-class problem described by

two attributes, x1 and x2. The problem has a linear decision boundary. Figure 8.22(a) shows the

decision boundary of a decision tree classifier on the problem. Figure 8.22(b) shows the decision

boundary of an ensemble of decision tree classifiers on the same problem. Although the ensemble’s

decision boundary is still piecewise constant, it has a finer resolution and is better than that of a single

tree.

 Unit-IV

32

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Bagging

We now take an intuitive look at how bagging works as a method of increasing accuracy.

Suppose that you are a patient and would like to have a diagnosis made based on your symptoms.

Instead of asking one doctor, you may choose to ask several. If a certain diagnosis occurs more than

any other, you may choose this as the final or best diagnosis. That is, the final diagnosis is made

based on a majority vote, where each doctor gets an equal vote. Now replace each doctor by a

classifier, and you have the basic idea behind bagging. Intuitively, a majority vote made by a large

group of doctors may be more reliable than a majority vote made by a small group.

Given a set, D, of d tuples, bagging works as follows. For iteration i (i= 1, 2,.... , k), a training

set, Di , of d tuples is sampled with replacement from the original set of tuples, D. Note that the term

bagging stands for bootstrap aggregation. Each training set is a bootstrap sample, as described in

Section 8.5.4. Because sampling with replacement is used, some of the original tuples of D may not

be included in Di , whereas others may occur more than once. A classifier model, Mi , is learned for

each training set, Di . To classify an unknown tuple, X, each classifier, Mi , returns its class

prediction, which counts as one vote. The bagged classifier, M*, counts the votes and assigns the

class with the most votes to X. Bagging can be applied to the prediction of continuous values by

taking the average value of each prediction for a given test tuple.

 Unit-IV

33

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

 It will not be considerably worse and is more robust to the effects of noisy data and

overfitting. The increased accuracy occurs because the composite model reduces the variance of the

individual classifiers.

Boosting and AdaBoost

As in the previous section, suppose that as a patient, you have certain symptoms. Instead of

consulting one doctor, you choose to consult several. Suppose you assign weights to the value or

worth of each doctor’s diagnosis, based on the accuracies of previous diagnoses they have made. The

final diagnosis is then a combination of the weighted diagnoses. This is the essence behind boosting.

 In boosting, weights are also assigned to each training tuple. A series of k classifiers is

iteratively learned. After a classifier, Mi , is learned, the weights are updated to allow the subsequent

classifier,MiC1, to “pay more attention” to the training tuples that were misclassified by Mi . The

final boosted classifier, M*, combines the votes of each individual classifier, where the weight of

each classifier’s vote is a function of its accuracy.

with replacement is used—the same tuple may be selected more than once. Each tuple’s chance of

being selected is based on its weight. A classifier model, Mi , is derived from the training tuples of Di
. Its error is then calculated using Di as a test set. The weights of the training tuples are then adjusted

according to how they were classified.

If a tuple was incorrectly classified, its weight is increased. If a tuple was correctly classified,

its weight is decreased. A tuple’s weight reflects how difficult it is to classify— the higher the weight,

the more often it has been misclassified. These weights will be used to generate the training samples

for the classifier of the next round. The basic idea is that when we build a classifier, we want it to

focus more on the misclassified tuples of the previous round. Some classifiers may be better at

classifying some “difficult” tuples than others. In this way, we build a series of classifiers that

complement each other.

Therefore, sometimes the resulting “boosted” model may be less accurate than a single model derived

fromthe same data. Bagging is less susceptible to model overfitting.While both can significantly

improve accuracy in comparison to a single model, boosting tends to achieve greater accuracy.

 Unit-IV

34

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

Random Forests

 Imagine that each of the classifiers in the ensemble is a decision tree classifier so that the

collection of classifiers is a “forest.” The individual decision trees are generated using a random

selection of attributes at each node to determine the split. More formally, each tree depends on the

values of a random vector sampled independently and with the same distribution for all trees in the

forest. During classification, each tree votes and the most popular class is returned.

 Random forests can be built using bagging (Section 8.6.2) in tandem with random attribute

selection. A training set, D, of d tuples is given. The general procedure to generate k decision trees for

the ensemble is as follows. For each iteration, i (i= 1, 2,... , k), a training set, Di , of d tuples is

sampled with replacement from D. That is, each Di is a bootstrap sample of D (Section 8.5.4), so that

some tuples may occur more than once

in Di , while others may be excluded. Let F be the number of attributes to be used to determine the

split at each node, where F is much smaller than the number of available attributes. To construct a

decision tree classifier, Mi , randomly select, at each node, F attributes as candidates for the split at

the node. The CART methodology is used to grow the trees. The trees are grown to maximum size

and are not pruned. Random forests formed this way, with random input selection, are called Forest-

RI.

 Unit-IV

35

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

 Another form of random forest, called Forest-RC, uses random linear combinations of the

input attributes. Instead of randomly selecting a subset of the attributes, it creates new attributes (or

features) that are a linear combination of the existing attributes. That is, an attribute is generated by

specifying L, the number of original attributes to be combined. At a given node, L attributes are

randomly selected and added together with coefficients that are uniform random numbers on [-1, 1].

F linear combinations are generated, and a search is made over these for the best split. This form of

random forest is useful when there are only a few attributes available, so as to reduce the correlation

between individual classifiers.

 Random forests are comparable in accuracy to AdaBoost, yet are more robust to errors and

outliers. The generalization error for a forest converges as long as the number of trees in the forest is

large. Thus, overfitting is not a problem. The accuracy of a random forest depends on the strength of

the individual classifiers and a measure of the dependence between them. The ideal is to maintain the

strength of individual classifiers without increasing their correlation. Random forests are insensitive

to the number of attributes selected for consideration at each split.

Improving Classification Accuracy of Class-Imbalanced Data

 Given two-class data, the data are class-imbalanced if the main class of interest (the positive

class) is represented by only a few tuples, while the majority of tuples represent the negative class.

For multiclass-imbalanced data, the data distribution of each class differs substantially where, again,

the main class or classes of interest are rare. The class imbalance problem is closely related to cost-

sensitive learning, wherein the costs of errors, per class, are not equal. In medical diagnosis, for

example, it is much more costly to falsely diagnose a cancerous patient as healthy (a false negative)

than to misdiagnose a healthy patient as having cancer (a false positive). A false negative error could

lead to the loss of life and therefore is much more expensive than a false positive error. Other

applications involving class-imbalanced data include fraud detection, the detection of oil spills from

satellite radar images, and fault monitoring.

 Traditional classification algorithms aim to minimize the number of errors made during

classification. They assume that the costs of false positive and false negative errors are equal. By

assuming a balanced distribution of classes and equal error costs, they are therefore not suitable for

class-imbalanced data.

 In this section, we look at general approaches for improving the classification accuracy of

class-imbalanced data. These approaches include (1) oversampling, (2) undersampling, (3) threshold

moving, and (4) ensemble techniques. The first three do not involve any changes to the construction

of the classification model. That is, oversampling and undersampling change the distribution of tuples

in the training set; threshold moving affects how the model makes decisions when classifying new

data.

 Both oversampling and undersampling change the training data distribution so that the rare

(positive) class is well represented. Oversampling works by resampling the positive tuples so that the

resulting training set contains an equal number of positive and negative tuples. Undersampling

 Unit-IV

36

Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei

works by decreasing the number of negative tuples. It randomly eliminates tuples from the majority

(negative) class until there are an equal number of positive and negative tuples.

Example 8.12 Oversampling and undersampling. Suppose the original training set contains 100

positive and 1000 negative tuples. In oversampling, we replicate tuples of the rarer class to form a

new training set containing 1000 positive tuples and 1000 negative tuples. In undersampling, we

randomly eliminate negative tuples so that the new training set contains 100 positive tuples and 100

negative tuples.

 Several variations to oversampling and undersampling exist. They may vary, for instance, in

how tuples are added or eliminated. For example, the SMOTE algorithm uses oversampling where

synthetic tuples are added, which are “close to” the given positive tuples in tuple space.

 The threshold-moving approach to the class imbalance problem does not involve any

sampling. It applies to classifiers that, given an input tuple, return a continuous output value. That is,

for an input tuple, X, such a classifier returns as output a mapping, . Rather than

manipulating the training tuples, this method returns a classification decision based on the output

values.

 Ensemble methods have also been applied to the class imbalance problem. The individual

classifiers making up the ensemble may include versions of the approaches described here such as

oversampling and threshold moving.

